Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5759, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848333

RESUMO

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Sondas Moleculares/farmacologia , Cristalografia por Raios X , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/ultraestrutura , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Domínios Proteicos , S-Adenosilmetionina/metabolismo
2.
Sci Signal ; 12(575)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940768

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze arginine methylation on both chromatin-bound and cytoplasmic proteins. Accumulating evidence supports the involvement of PRMT5, the major type II PRMT, in cell survival and differentiation pathways that are important during development and in tumorigenesis. PRMT5 is an attractive drug target in various cancers, and inhibitors are currently in oncological clinical trials. Nonetheless, given the complex biology of PRMT5 and its multiple nonhistone substrates, it is paramount to fully characterize these dynamic changes in methylation and to link them to the observed anticancer effects to fully understand the functions of PRMT5 and the consequences of its inhibition. Here, we used a newly established pipeline coupling stable isotope labeling with amino acids in cell culture (SILAC) with immunoenriched methyl peptides to globally profile arginine monomethylation and symmetric dimethylation after PRMT5 inhibition by a selective inhibitor. We adopted heavy methyl SILAC as an orthogonal validation method to reduce the false discovery rate. Through in vitro methylation assays, we validated a set of PRMT5 targets identified by mass spectrometry and provided previously unknown mechanistic insights into the preference of the enzyme to methylate arginine sandwiched between two neighboring glycines (a Gly-Arg-Gly, or "GRG," sequence). Our analysis led to the identification of previously unknown PRMT5 substrates, thus both providing insight into the global effects of PRMT5 and its inhibition in live cells, beyond chromatin, and refining our knowledge of its substrate specificity.


Assuntos
Proteína-Arginina N-Metiltransferases/metabolismo , Proteômica , Arginina/química , Arginina/metabolismo , Dipeptídeos/química , Dipeptídeos/metabolismo , Células HeLa , Humanos , Marcação por Isótopo , Metilação , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/química , Especificidade por Substrato
3.
Nat Commun ; 9(1): 2840, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026560

RESUMO

Oligodendrocytes (OLs) are the myelin-forming cells of the central nervous system. They are derived from differentiation of oligodendrocyte progenitors through a process requiring cell cycle exit and histone modifications. Here we identify the histone arginine methyl-transferase PRMT5, a molecule catalyzing symmetric methylation of histone H4R3, as critical for developmental myelination. PRMT5 pharmacological inhibition, CRISPR/cas9 targeting, or genetic ablation decrease p53-dependent survival and impair differentiation without affecting proliferation. Conditional ablation of Prmt5 in progenitors results in hypomyelination, reduced survival and differentiation. Decreased histone H4R3 symmetric methylation is followed by increased nuclear acetylation of H4K5, and is rescued by pharmacological inhibition of histone acetyltransferases. Data obtained using purified histones further validate the results obtained in mice and in cultured oligodendrocyte progenitors. Together, these results identify PRMT5 as critical for oligodendrocyte differentiation and developmental myelination by modulating the cross-talk between histone arginine methylation and lysine acetylation.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Células-Tronco/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/citologia , Proteína-Arginina N-Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...